Phương trình Na2S2O3 + AgI → NaI + Na3[Ag(S2O3)2]
Xem thông tin chi tiết về điều kiện, quá trình, hiện tượng sau phản ứng, các chất tham phản ứng, các chất sản phẩm sau phản ứng của phương trình Na2S2O3 + AgI → NaI + Na3[Ag(S2O3)2]
Tìm kiếm phương trình hóa học
Hãy nhập vào chất tham gia hoặc/và chất sản phẩm để bắt đầu tìm kiếm
Giới thiệu
-
Cách viết phương trình đã cân bằng
-
Thông tin chi tiết về phương trình
Điều kiện phản ứng khi cho tác dụng Na2S2O3 + AgI
-
Thông tin chi tiết các chất tham gia phản ứng
-
Thông tin chi tiết các chất sản phẩm sau phản ứng
Thông tin về NaI (natri iodua)
Thông tin về Na3[Ag(S2O3)2] (sodium bis(thiosulfato)argentate(I))
Cách viết phương trình đã cân bằng
2
Na2S2O3
Tên gọi: natri thiosulfat
Nguyên tử khối: 158.1077
Nhiệt độ sôi: 100°C
Nhiệt độ nóng chảy: 48.3°C
+
AgI
Tên gọi: Bạc iotua
Nguyên tử khối: 234.77267 ± 0.00023
→
NaI
Tên gọi: natri iodua
Nguyên tử khối: 149.894239 ± 0.000030
Nhiệt độ sôi: 1.304°C
Nhiệt độ nóng chảy: 661°C
+
Na3[Ag(S2O3)2]
Tên gọi: sodium bis(thiosulfato)argentate(I)
Nguyên tử khối: 401.0939
Tên gọi: natri thiosulfat
Nguyên tử khối: 158.1077
Nhiệt độ sôi: 100°C
Nhiệt độ nóng chảy: 48.3°C
Tên gọi: Bạc iotua
Nguyên tử khối: 234.77267 ± 0.00023
Tên gọi: natri iodua
Nguyên tử khối: 149.894239 ± 0.000030
Nhiệt độ sôi: 1.304°C
Nhiệt độ nóng chảy: 661°C
Tên gọi: sodium bis(thiosulfato)argentate(I)
Nguyên tử khối: 401.0939
Thông tin chi tiết về phương trình
Điều kiện phản ứng khi cho tác dụng Na2S2O3 + AgI
- Chất xúc tác: không có
- Nhiệt độ: thường
- Áp suất: thường
- Điều kiện khác: không có
Quá trình phản ứng Na2S2O3 + AgI
Quá trình: đang cập nhật...
Lưu ý: không có
Hiện tượng xảy ra sau phản ứng Na2S2O3 + AgI
Hiện tượng: đang cập nhật...
Thông tin chi tiết các chất tham gia phản ứng
Thông tin về Na2S2O3 (natri thiosulfat)
- Nguyên tử khối: 158.1077
- Màu sắc: tinh thể màu trắng
- Trạng thái: chất rắn
Phép chuẩn độ iot Trong hóa học phân tích, ứng dụng quan trọng nhất đến từ phản ứng định lượng với iot của anion thiosunfat, khử iot thành ion iođua trong khi nó bị oxi hóa thành ion tetrathionat: 2 S2O32−(aq) + I2(aq) → S4O62−(aq) + 2 I−(aq) Do bản chất định lượng của phản ứng, cũng như sự thậ...
Thông tin về AgI (Bạc iotua)
- Nguyên tử khối: 234.77267 ± 0.00023
- Màu sắc: chưa cập nhật
- Trạng thái: chưa cập nhật
Là tinh thể rắn màu vàng, không tan trong nước, không mùi, tan trong axit, tạo phức với amoniac, thiourê. Hợp chất này là chất rắn có màu vàng nhạt nhưng các mẫu có chứa bạc kim loại lẫn vào nên có màu xám. Bạc iotua được sử dụng làm chất sát trùng và chất gom mây tạo mưa nhân tạo. Điều chế bạc iot...
Thông tin chi tiết các chất sản phẩm sau phản ứng
Thông tin về NaI (natri iodua)
- Nguyên tử khối: 149.894239 ± 0.000030
- Màu sắc: dạng bột trắng chảy rữa
- Trạng thái: chất rắn
Natri iođua thường dùng để điều trị và ngăn ngừa chứng thiếu iot. Natri iođua được dùng trong các phản ứng trùng hợp, ngoài ra còn trong phản ứng Finkelstein (như dung dịch axeton) cho việc chuyển hoá ankyl clorua sang ankyl iođua. Điều này dựa vào tính không tan của natri clorua trong axeton để ...
Thông tin về Na3[Ag(S2O3)2] (sodium bis(thiosulfato)argentate(I))
- Nguyên tử khối: 401.0939
- Màu sắc: chưa cập nhật
- Trạng thái: chưa cập nhật
Tổng số đánh giá: 0
Xếp hạng: 5 / 5 sao
Các phương trình điều chế Na2S2O3
Na2SO3
Tên gọi: natri sulfit
Nguyên tử khối: 126.0427
Nhiệt độ nóng chảy: 33.4°C
+
S
Tên gọi: sulfua
Nguyên tử khối: 32.0650
Nhiệt độ sôi: 444°C
Nhiệt độ nóng chảy: 115°C
→
Na2S2O3
Tên gọi: natri thiosulfat
Nguyên tử khối: 158.1077
Nhiệt độ sôi: 100°C
Nhiệt độ nóng chảy: 48.3°C
Tên gọi: natri sulfit
Nguyên tử khối: 126.0427
Nhiệt độ nóng chảy: 33.4°C
Tên gọi: sulfua
Nguyên tử khối: 32.0650
Nhiệt độ sôi: 444°C
Nhiệt độ nóng chảy: 115°C
Tên gọi: natri thiosulfat
Nguyên tử khối: 158.1077
Nhiệt độ sôi: 100°C
Nhiệt độ nóng chảy: 48.3°C
Chất xúc tác
Nước
Nhiệt độ
thường
Áp suất
thường
Điều kiện khác
không có
H2O
Tên gọi: nước
Nguyên tử khối: 18.01528 ± 0.00044
Nhiệt độ sôi: 100°C
Nhiệt độ nóng chảy: 4°C
+
2
Na2S2O4
Tên gọi: Natri dithionit
Nguyên tử khối: 174.1071
Nhiệt độ nóng chảy: 52°C
→
Na2S2O3
Tên gọi: natri thiosulfat
Nguyên tử khối: 158.1077
Nhiệt độ sôi: 100°C
Nhiệt độ nóng chảy: 48.3°C
+
2
NaHSO3
Tên gọi: Natri bisulfit
Nguyên tử khối: 104.0609
Nhiệt độ nóng chảy: 150°C
Tên gọi: nước
Nguyên tử khối: 18.01528 ± 0.00044
Nhiệt độ sôi: 100°C
Nhiệt độ nóng chảy: 4°C
Tên gọi: Natri dithionit
Nguyên tử khối: 174.1071
Nhiệt độ nóng chảy: 52°C
Tên gọi: natri thiosulfat
Nguyên tử khối: 158.1077
Nhiệt độ sôi: 100°C
Nhiệt độ nóng chảy: 48.3°C
Tên gọi: Natri bisulfit
Nguyên tử khối: 104.0609
Nhiệt độ nóng chảy: 150°C
Chất xúc tác
không có
Nhiệt độ
thường
Áp suất
thường
Điều kiện khác
không có
2
Na2S2O4
Tên gọi: Natri dithionit
Nguyên tử khối: 174.1071
Nhiệt độ nóng chảy: 52°C
→
Na2S2O3
Tên gọi: natri thiosulfat
Nguyên tử khối: 158.1077
Nhiệt độ sôi: 100°C
Nhiệt độ nóng chảy: 48.3°C
+
Na2S2O5
Tên gọi: Natri pyrosulfit
Nguyên tử khối: 190.1065
Tên gọi: Natri dithionit
Nguyên tử khối: 174.1071
Nhiệt độ nóng chảy: 52°C
Tên gọi: natri thiosulfat
Nguyên tử khối: 158.1077
Nhiệt độ sôi: 100°C
Nhiệt độ nóng chảy: 48.3°C
Tên gọi: Natri pyrosulfit
Nguyên tử khối: 190.1065
Chất xúc tác
không có
Nhiệt độ
> 52
Áp suất
thường
Điều kiện khác
không có
Các phương trình điều chế AgI
AgNO3
Tên gọi: bạc nitrat
Nguyên tử khối: 169.8731
Nhiệt độ sôi: 444°C
Nhiệt độ nóng chảy: 212°C
+
I2
Tên gọi: Iot
Nguyên tử khối: 253.808940 ± 0.000060
Nhiệt độ sôi: 184°C
Nhiệt độ nóng chảy: 113°C
→
AgI
Tên gọi: Bạc iotua
Nguyên tử khối: 234.77267 ± 0.00023
+
INO3
Tên gọi: Iot nitrat
Nguyên tử khối: 188.9094
Tên gọi: bạc nitrat
Nguyên tử khối: 169.8731
Nhiệt độ sôi: 444°C
Nhiệt độ nóng chảy: 212°C
Tên gọi: Iot
Nguyên tử khối: 253.808940 ± 0.000060
Nhiệt độ sôi: 184°C
Nhiệt độ nóng chảy: 113°C
Tên gọi: Bạc iotua
Nguyên tử khối: 234.77267 ± 0.00023
Tên gọi: Iot nitrat
Nguyên tử khối: 188.9094
Chất xúc tác
không có
Nhiệt độ
thường
Áp suất
thường
Điều kiện khác
không có
AgNO3
Tên gọi: bạc nitrat
Nguyên tử khối: 169.8731
Nhiệt độ sôi: 444°C
Nhiệt độ nóng chảy: 212°C
+
KI
Tên gọi: kali iodua
Nguyên tử khối: 166.00277 ± 0.00013
Nhiệt độ sôi: 1330°C
Nhiệt độ nóng chảy: 681°C
→
KNO3
Tên gọi: kali nitrat; diêm tiêu
Nguyên tử khối: 101.1032
Nhiệt độ sôi: 400°C
Nhiệt độ nóng chảy: 334°C
+
AgI
Tên gọi: Bạc iotua
Nguyên tử khối: 234.77267 ± 0.00023
Tên gọi: bạc nitrat
Nguyên tử khối: 169.8731
Nhiệt độ sôi: 444°C
Nhiệt độ nóng chảy: 212°C
Tên gọi: kali iodua
Nguyên tử khối: 166.00277 ± 0.00013
Nhiệt độ sôi: 1330°C
Nhiệt độ nóng chảy: 681°C
Tên gọi: kali nitrat; diêm tiêu
Nguyên tử khối: 101.1032
Nhiệt độ sôi: 400°C
Nhiệt độ nóng chảy: 334°C
Tên gọi: Bạc iotua
Nguyên tử khối: 234.77267 ± 0.00023
Chất xúc tác
không có
Nhiệt độ
thường
Áp suất
thường
Điều kiện khác
không có
2
H2O
Tên gọi: nước
Nguyên tử khối: 18.01528 ± 0.00044
Nhiệt độ sôi: 100°C
Nhiệt độ nóng chảy: 4°C
+
KI
Tên gọi: kali iodua
Nguyên tử khối: 166.00277 ± 0.00013
Nhiệt độ sôi: 1330°C
Nhiệt độ nóng chảy: 681°C
+
[Ag(NH3)2]OH
Tên gọi: diamminesilver(I) hydroxide
Nguyên tử khối: 158.9366
→
KOH
Tên gọi: kali hidroxit
Nguyên tử khối: 56.10564 ± 0.00047
Nhiệt độ sôi: 1327°C
Nhiệt độ nóng chảy: 406°C
+
2
NH4OH
Tên gọi: Amoni hidroxit
Nguyên tử khối: 35.04580 ± 0.00085
Nhiệt độ sôi: 37°C
+
AgI
Tên gọi: Bạc iotua
Nguyên tử khối: 234.77267 ± 0.00023
Tên gọi: nước
Nguyên tử khối: 18.01528 ± 0.00044
Nhiệt độ sôi: 100°C
Nhiệt độ nóng chảy: 4°C
Tên gọi: kali iodua
Nguyên tử khối: 166.00277 ± 0.00013
Nhiệt độ sôi: 1330°C
Nhiệt độ nóng chảy: 681°C
Tên gọi: diamminesilver(I) hydroxide
Nguyên tử khối: 158.9366
Tên gọi: kali hidroxit
Nguyên tử khối: 56.10564 ± 0.00047
Nhiệt độ sôi: 1327°C
Nhiệt độ nóng chảy: 406°C
Tên gọi: Amoni hidroxit
Nguyên tử khối: 35.04580 ± 0.00085
Nhiệt độ sôi: 37°C
Tên gọi: Bạc iotua
Nguyên tử khối: 234.77267 ± 0.00023
Chất xúc tác
không có
Nhiệt độ
thường
Áp suất
thường
Điều kiện khác
không có
Một số định nghĩa cơ bản trong hoá học.
Mol là gì?
Trong hóa học, khái niệm mol được dùng để đo lượng chất có chứa 6,022.10²³ số hạt đơn vị nguyên tử hoặc phân tử chất đó. Số 6,02214129×10²³ - được gọi là hằng số Avogadro.
Xem thêmĐộ âm điện là gì?
Độ âm điện là đại lượng đặc trưng định lượng cho khả năng của một nguyên tử trong phân tử hút electron (liên kết) về phía mình.
Xem thêmKim loại là gì?
Kim loại (tiếng Hy Lạp là metallon) là nguyên tố có thể tạo ra các ion dương (cation) và có các liên kết kim loại, và đôi khi người ta cho rằng nó tương tự như là cation trong đám mây các điện tử.
Xem thêmNguyên tử là gì?
Nguyên tử là hạt nhỏ nhất của nguyên tố hóa học không thể chia nhỏ hơn được nữa về mặt hóa học.
Xem thêmPhi kim là gì?
Phi kim là những nguyên tố hóa học dễ nhận electron; ngoại trừ hiđrô, phi kim nằm bên phải bảng tuần hoàn.
Xem thêmNhững sự thật thú vị về hoá học có thể bạn chưa biết.
Sự thật thú vị về Hidro
Hydro là nguyên tố đầu tiên trong bảng tuần hoàn. Nó là nguyên tử đơn giản nhất có thể bao gồm một proton trong hạt nhân được quay quanh bởi một electron duy nhất. Hydro là nguyên tố nhẹ nhất trong số các nguyên tố và là nguyên tố phong phú nhất trong vũ trụ.
Xem thêmSự thật thú vị về heli
Heli là một mặt hàng công nghiệp có nhiều công dụng quan trọng hơn bong bóng tiệc tùng và khiến giọng nói của bạn trở nên vui nhộn. Việc sử dụng nó là rất cần thiết trong y học, khí đốt cho máy bay, tên lửa điều áp và các tàu vũ trụ khác, nghiên cứu đông lạnh, laser, túi khí xe cộ, và làm chất làm mát cho lò phản ứng hạt nhân và nam châm siêu dẫn trong máy quét MRI. Các đặc tính của heli khiến nó trở nên không thể thiếu và trong nhiều trường hợp không có chất nào thay thế được heli.
Xem thêmSự thật thú vị về Lithium
Lithium là kim loại kiềm rất hoạt động về mặt hóa học, là kim loại mềm nhất. Lithium là một trong ba nguyên tố được tạo ra trong BigBang! Dưới đây là 20 sự thật thú vị về nguyên tố Lithium - một kim loại tuyệt vời!
Xem thêmSự thật thú vị về Berili
Berili (Be) có số nguyên tử là 4 và 4 proton trong hạt nhân của nó, nhưng nó cực kỳ hiếm cả trên Trái đất và trong vũ trụ. Kim loại kiềm thổ này chỉ xảy ra tự nhiên với các nguyên tố khác trong các hợp chất.
Xem thêmSự thật thú vị về Boron
Boron là nguyên tố thứ năm của bảng tuần hoàn, là một nguyên tố bán kim loại màu đen. Các hợp chất của nó đã được sử dụng hàng nghìn năm, nhưng bản thân nguyên tố này vẫn chưa bị cô lập cho đến đầu thế kỉ XIX.
Xem thêm